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Ap~oximate solution of the problem of unsteady mass exchange between a bub- 
ble and medium in a reactor with a fluidized layer in the presence of first order 

volume chemical reaction is derived. It is assumed that the bubble velocity ex- 
ceeds the rate of fluidization, which results in the formation of a closed circula- 

tion region containing the bubble Cl]. The problem reduces to solving the equa- 

tion of unsteady convective diffusion outside the closed circulation region, and 
also of the equation of balance of the reagent in that region, Variation of the 

reagent concentration along the reactor resulting from the volume reaction and 
lengthwise agitation is taken into consideration. The field of concentration out- 
side the closed circulation region, the change of reagent concentration inside 
that region with time, and the coefficient of mass exchange are determined by 
the method of joining asymptotic expansions in small P&let numbers. 

The problem of mass exchange between a bubble with a fluid&d layer with 
volume reaction without allowance for variation of concentration along the reac- 

tor was solved in [2] by numerical methods for considerable P&let numbers.The 
Authors had investigated the less essential process of mass exchange between the 

bubble and the surrounding cloud inside the region of circulation. A similar prob- 

lem of mass exchange between a bubble and a stationary fluid was also consid- 
ered in [3] for considerable P&let numbers and specially selected boundary con- 

ditions for concentration at considerable distance from the bubble. 

An analytic solution of the problem of unsteady mass exchange between a bub- 
ble and the continuous phase of a fluidized layer is derived below for the case of 

small P&let numbers with allowance for a chemical reaction in the layer. The 
results obtained in [4] represent a particular case of this solution. 

1. Statement of problem, Method of solution, Let us consider a sphe- 
rical bubble rising at constant velocity ub > ZQ, in a reactor with a layer of fluidized 
catalyst (& is the mean velocity of the homogeneous stream of fluid in the interstices 
of particles away from the bubble). The bubble radius ah is assumed fairly small in com- 

parison with the transverse and longitudinal dimensions of reactor and the distance ofthe 
bubble &om the walls and in- and outlet sections of the reactor is sufficiently great so 

that the effect of the reactor boundaries on the flow around the bubble can be neplected. 
The flow field of the fluid phase outside the bubble is defined by the stream function 

(1.1) 
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where Q, is the radius of the cloud surrounding the bubble whose external surface is im- 
permeable to the fluid phase. Inside the region bounded by that surface there is intense 

circulation of fluid, hence it is assumed that the fluid is thoroughly agitated there. 
In a fluidized layer a chemical reaction takes place on the surface of catalyst parti- 

cles, which corresponds to a first-order effective volume reaction whose rate constant is 

denoted by k. The lengthwise agitation of reagent in the reactor is determined by the 
convective diffusion process whose effective coefficient is denoted by D. The charac- 

teristic numbers of the problem arc : the P&let number I’ and the Thiele modulus Y 
defined, respectively, by 

p 
(a 

ZS 
b-f? ) y=aJ/g- 

As the result of the reaction, diffusion and convective transport of the reagent, a cer- 

tain lengthwise concentration distribution c, (5) sets in the reactor, This concentra- 
tion must be taken into account in establishing boundary conditions at considerable dis- 

tance from the bubble. It is determined by the solution of the one-dimensional equation 

of steady convective diffusion with boundary conditions 

D 
d%, dc, 

yg- -*a - - kc, = 0 
dx 

CC= -x1, c, -2 c,; CT--+ co, c, --f 0 

(where coordinate x = --x1 (x1 > 0) corresponds to the reactor inlet) for a semi- 
infinite reactor. The solution for the c, + with allowance for subsequent analysis can be 

written as 

cm = sexP(-J+l~)* c,=c,oxp(--?I?) (1.2) 

where co is the reagent concentration at point IC = 0 to which we shall relate hence- 
forth the bubble center at the initial instant of time. 

The problem reduces to the determination of the effect of the time-dependent con- 

centration of the diffusion flux outside the cloud on its external boundary and of the rea- 
gent concentration c, inside the closed circulation region. Since solid phase particles 

are present inside the cloud, it is reasonable to assume that a chemical reaction of the 

first order whose effective rate coefficient is k+ takes place inside that region. We neg- 
lect the effect of reactor walls and inlet on the diffusion process, and assume that away 

from the bubble concentration is determined by formula (1.2). 
The concentration field outside the closed circulation region is determined by the 

equation of convective diffusion which in dimensionless variables 

is of the form (the prime is subsequently omitted) 

(I.41 
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In specifying boundary conditions away from the bubble and of the initial condition 
at z =I 0 , it should be noted that coordinates x and r are related by formula 

%Ja: x== -z - a,rp z a,P 
D -&+-a,rP 

With the use of (1.2) from this we obtain the boundary and initial conditions of the form 

(1.5) 

a=O, r>l, c = exp (Pyrp) (1.6) 

The equation for the concentration c+ inside the closed circulation region is derived 

from the expression for the concentration change rate c+ produced by the reaction inside 
the cloud and by the inflow of substance from outside. It is of the form 

(1.7) 

where Y, is the Thiele modulus for the closed circulation region. 

The initial condition for Eq. (1.7) is 

a = 0, c, = C,O 

where generally c+s # cO 

(1.8) 

Boundary condition for r = 1 is obtained from the condition of concentration con- 
tinuity at the external boundary of the cloud 

r = 1, c = c, (1‘ 9) 

Thus the problem of determination of c and C+ reduces to solving the system of Eqs. 

(1.4) and (1.7) with boundary and initial conditions (1.5),(1.6),(1,8) and (1.9). 
We introduce functions 5 and E+by formulas 

c=(l- E (r, p, 4 ) exp ( - P2rl &y) ew F-n-4 

‘I 
c+=exp ( --artmr &(r) ) 

The problem of determination of functions 5 and E+ is defined by 

0.10) 

(1.11) 

z = 0, g > 1, E = 0; z = 0, E+ = C,Q 

r‘= 1, ePTp(i - E) = E,; r--+00, 5-0 

In deriving Eqs. (1.11) we used the identity which follows from the relationship between 
11, ‘P and P in accordance with the formula in (1.2) 
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P2n2 - up”+ P2Tj * - zzz 1’9 
i---6 

The solution of problem (1.11) is constructed by the method of joining asymptotic ex- 

pansions in small P&let number. It is sought in the form of external and internal expan- 

sion of E in P&let number in regions r > 0 (1 I P), and 1 < T < 0 (1 I P) , respec- 
tively. and of an asymptotic expansion of E+ in P . Such solution is presented below in 
the form of asymptotics for time -c > 0 (P-“). 

The dimensionless stream function I$ in regions 1 < r < 0 (1 / P) and r > 0 (1 / 
P) is, in accordance with (1.1) and (1.3), of the form 

i\(r<o(llP), ~=q)*+2.-+)2+ (1.12) 

r>O(l/P), I$=%, $*=p’J++O(P3), (p = rP) 

To solve problem (1.11) we use the Laplace transformation 

5 = 1 exp (- P2sz) E (r, p, T) do, 
;, 

5, = 1 exp (- P2sz) $+ (7) dr 
0 

With this definition of haplace transformation the pre-image asymptotics with respect 

to time r > 0 (P’-‘) correspond to image values 1 .s 1 < 0 (1) as implied by the theo- 

rem on the relation between pre-image and image values. Owing to the boundedness 

of E and E+ when ‘t -+ + 00 finctions 5 (s) and p+ (s) are analytic functions of s 

when Re s > 0. 
From (1.11) for 5 (s) and c+ (a) we obtain the problem 

p2$, - c+. - P2y -& 5, + ‘J?+2L = 

r=l, 
1 -- 

f”S 
5 = /+%I~~+ (1.15) 

r--t 00, ;-to (1.16) 

We seek the solution of problem (1.13) - (1.16) in the form of external (denoted by c* ) 
and internal (denoted by &)expansions for function 5 and an asymptotic expansion of 
function 5, in Pe’clet number in the form 

L = 5 a,(P) 5, (r, cL, s), c* = 5 a(*)(P)pQ(p, p, s) 
7L=0 n;ql 

5, = 5 at,, (P) 5tn (4 
n=l.l 

As to functions a,, (P), a(“) (P) and a+7L (P) the only assumption is that for P-+OA 
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%Lil(~) --3 0 

a,(P) * 
a@+‘) (P) _, () 

co(P) ’ 
~+7%+1(f”) _ () 

at, (4 

In region 1 < r < 0 (1 / P) the problem for functions c* and c.+is of the form 

(1.13)-(1.15). In the region r > 0 (1 / P) the problem for function L* is of the form 

95” = A*c* - - J 8;T;; :;’ + &I (I” $$ + A$ JC) + (1.17) 

where p = rP is the contracted radial coordinate and A* is the Laplace operator in 

coordinates p, 8. 
The constants which appear in the solution of problem (1.13) - (1.15) and (1.17)are 

determined by joining the internal and external expansions for 5. 

2, The mro and firat rpproximrtionl for p rnd 5,. Noting that 

-;F+$T +LO(p3) (2.1) 

for the zero term of external expansion c(Q) we have the problem which obtains from 

problem (1.17) as the result of discarding the last two terms of the equation in accord- 
ance with (2.1). This problem has the trivial solution 

C(O) = 0 

The form of the boundary condition (1.15) implies that in the zero approximation 
a, (P) = a,, (P) = P-2. Hence for the zero term of the internal expansion &, from 
(1.13) and (1.15) we obtain the problem 

Ag,==O; r=l, ($=--5,,,++ 

The solution of this problem after joining CO and Y$O1 is 

Go= (-5+o++)+ (2.21 

The obtained solution makes it possible to determine c+. with the use of Eq. (1.14). 
Retaining in it terms of order 1 / P2 and taking into acconnt the asymptotic expansions 

of exponents appearing in it in P , we obtain the equation for 5,s 
1 

y,25+o = - -+ 5 !$ ] 
i-=1 

dr_l (2.3) 
-- I 

Having determined c+. from (2.3), from (2.2) we obtain the explicit form of & . 
Finally, we obtain 

Lto zz %, Go-$, Q= ,Y$ (2.4) 
+ 

It follows from (2.4) that a(‘) (P) = 1 / P. Retaining in (1.17) terms of order 1 i P 
and taking into account (I, 12) and (2. I), we obtain for the determination of the first 
term of external expansion r(*) the problem 
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The substitution 

reduces Eq. (2.5) to the Helmholtz equation 

A*;“” _ 
i 

(1 - 2W 
4 

+ s] 7$‘) = 0 

From this we obtain the general solution of problem (2.5) 

where (p, (p) is the Legendre polynomial Henceforth we select that branch of func- 

tion JL(l - 25-p + 4 s, which yields positive roots at the real semi-axis 0 < s < 

+oc l 

Using the condition of joining P-lc(l) with PWc~,, for determining A,, we obtain 
the solution 

Ql) = L 
SP 

exp + (1 - 2q) p - 1/(1- 2rlY + &I} 
I [ 

(2.7) 

Equation (2.7) implies that a, (P) = 1 / P, hence the boundary condition (1.15) 

yields czr (P) = 1 / P (*). Using (1. IS), we obtain for & the equation 

& = - + ( I ;z2n 
- - f ) PI (P) 

whose general solution is 

L = + ( k+ + &) Pl @I + 2 (w-1L + b--+1) P,(p) 
n=0 

(2.8) 

Retaining in (1.15) terms of order 1 / P, we obtain the boundary condition for & 

r = 1, g1 = - St1 + Stov 

which yields the linear relationship between coefficients a,, and b, 

ho=--uo---<+I, b1 =-ual-$(+-‘1)+5+oll (2.9) 

b R i- arL = 0, n = 2, 3, 

To determine the unknown coefficients in (2.8) we carry out the joining of the first 
approximations &r - p-2cO + P-l j, for r -+ 00 and <*I ~= P-l c(l) for p --t 0. 
Using the results of the joining operation and (2.9), we obtain for function cl, 

cl= -$f(l-2q)“+4s+ (&)/(l-2q)2+4s-~+1) ‘/ (2.10) 

+ + -+ ElJPl(cL) 

j 1.1 = 4 ( 

1-2q 3 
------i--&)+G 2 /I$ 

*) Editor’s Note. Literal translation of the original Russian sentence. 
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It remains to determine c+i. For this from (1.14) we obtain the equation 

whose solution, after the substitution of expressions from (2.4) and (2.10) for co and & , 
respectively, is 

5+1 = Q ‘f3; @ 9( 1- 2+ + 4s (2.11) 

The explicit form of & can now be determined from (2.10) 

(2.12) 

8, The :roond rpproximrtlon for 5 rnd 5,. It follows from (2.4) and 
(2.12) that CX(~)(~) = 1. Using (2.1). from (1.1’7) we obtain for 5(s) the same problem 
as for c(t), whose general solution is of the form (2.6). After the determination of coef- 
ficients A, by joining [*s = p-i [ft) + c(s) for p --f 0 with 5’1 = P2 co + P-l cl 
for r --f 00 , we obtain - 

5’2’ = + J/(1 - 2r$ -+- 4s p (3.1) 

It follows from (3.1) and (1.14) that as (P) = cc,@‘) = 1. This makes it possible to 

obtain equations for second appro~ma~ons of the internal expansion and the expan- 
sion of 5,. Solutions of these equations are derived by using the procedure similar to 

that described in Sect. 2. Expressions for C+.J and 5s are not adduced here because of 

their unwieldiness. They will be taken into account m final formulas for E, 5, and Sb. 

4. Diatrlbutlon of concentratfon. Inflow of matter to the cloosd 
circulation region, From the theorem on the relation between limit pre-image 

and image values, which for the considered Laplace transformation is of the form 

lim E (r, p, .t) 2~ lim Psi; (T, p, s) 
:-CO S-4 

we find that in the case of homogeneous concentration distribution away from the bubble 
(TV = 0) and total absorption of matter in the cloud fg = 1) with z -+ co a station- 

ary inundation di~ibntion is established, and that the latter is the same as calculated 
for this case in [4]. 

To determine the concentration field it is generally necessary to resort to the inverse 
Laplace transformation of derived functions CJ*), t,, and <+,. For the external expan- 
sion t* this yields 5 (4.1) 

P+@qplt, q)exp [-k$Q? PZ(% -t,] x 
a 

dt 
;: + 0 (P) 

y n (t _ q”_j 

where 
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Function E in the proximity of the closed circulation region (internal asymptotic ex- 

pansion) is or the form 

E* = $ + P id) (P%, q) ( - q f- f ) --t &,,P,(p)-j i_ P%, -k 0 V”) (4.3) 

E ,2 ==: - y + $ &I, TE(1.j P, (r-l) (4.4) 
?I==0 

iJo = fl - 2vq _ (1 --w * - 2rl 
4 ---7+-g 6 

‘l(i--r) s2  = (1 -- 2qf2 I-22q 2 
7’ 

-_--- 
12 24 21 

T r (5 - T(1 (I) ‘- 2 = 211) 
6 

+ 
3 

where &, 1 is defined by formula (2.10) and .T& by expression (4.6) (see below). The 

appoximate expression for & was obtained by inverse Laplace transformation of &. 
The asymptotic expression for function E, (z) is of the form 

E, @I = 1 - 4 f pq (1 - rr) @ P% q) + PT+s + 0 (P”) ce 5) 

where fiction &_z is the pre-image of Pw2 c,% (J-), whose approximate expression is 

5 (4.6) 

Concentration distribution c outside the closed circulation region and concentration 
c, inside it is determined by formulas (1.10) with the use of obtained expansions (4.1)- 

(4.6). 
We define the cloud mass exchange by the mean Sherwood number in which the “ini- 

tial” concentration c0 is chosen as the characteristic value. In dimensionless variables 

the mean Sherwood number is of the form 

or, using (X.1 0) 

(4.7) 
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(4.8) 

It is convenient to express the Sherwood number in the form of an asymptotic expan- 
sion in the P&let number. Taking into account the expression for Es and the asymptotic 

expansion of exponents in (4,7), from (4.1) - (4.5) we obtain 

Sh” = q + PqW (P”T, q) + P2Sh; + 0 (P”) (4.9) 

5. Region of applicability of re)ult#. The derived expansions of E, E+ 
and Sh” in P&let number are valid for any q, q and 6 # 1. The method of asympto- 
tic expansions capable of being joined does not permit the determination of the upper 

limit of Pkclet numbers for which expansions (4. l), (4.3), (4.5) and (4.9) are valid. HOW- 
ever the procedure of solution derivations makes it reasonable to expect a widening of 

the limits of solution by P&let numbers with decreasing parameters 11 and 6. 
In the derivation of solution the effect of walls and of the inlet section of the reactor 

on the diffusion process was neglected here. Owing to the distortion of the cloud shape 

and the necessity to allow for diffusion transport in the process of bubble formation, it is 
extremely difficult to take fully into account the effect of the inlet section. It can be 

shown, however, that if the initial concentration distribution for a formed bubble at a dis.- 
tance r > 0 (11 P) differs only slightly from the concentration (1.2) in the absence 

of a bubble, the effect of the inlet section for times ‘G > 0 (1 / P2) introduces in the 
terms of expansions 0 (P”) only an insignificant correction. Otherwise the derived ex- 

pansions are valid up to and including terms 0 (P) . 

In practice in a number of cases the formation of a stable bubble takes place at dis- 

tances of the order of one or two radii from the reactor inlet, as the result of coalescence 

of very small bubbles. Inside these and in the surrounding medium the concentration 

levels out almost instantaneously and the effect of the inlet section on the formed bubble 

can be neglected. Hence it is possible to use the derived solution with an accuracy to 
within terms 0 (P”). 

The derived solution may also be used for analyzing the mass exchange between an 
isolated bubble and a medium in laboratory reactors in which the introduction of the 

bubble into a homogeneous fIuidized layer is done by means of a special device and at 
considerable distance from the reactor inlet. In that case the effect of the inlet section 

is negligible, the time of bubble formation is short, the concentration distribution at the 
initial instant of time is noticeably different from (1.2) only at small distances from the 
bubble, and the solution is valid up to terms 0 (P2). 

The assumption of constancy of bubble dimensions during its ascent in the reactor is 
important, since growth and fractionation of bubbles is often observed. Assumption about 
the isotropy of effective diffusion coefficients in the continuous phase is also important. 



116 Iu.P.Gupalo, Iu.S.Riazantsev and Iu.A.Sergeev 

sn 

I 

u 

&+ 

I 

0 I 2 

Fig. I Fig. 2 

Fig. 3 Fig. 4 



Unsteady mass exchange 117 

The dependence of concentration inside the cloud and of the mean Sherwood number 

on time for 6 = 0.333 and several values of parameters P, Q and ye is shown in 

Figs. l-3. Figure 1 illustrates the effect of the Wclet number on the timedependence 
of concentration inside the cloud and of the mean Sherwood number for q = 0.5 and 
q -z 1. The dependence of solution on the reaction rate constant inside the cloud for 

P = 0.5 and q = 1 is shown in Fig.2. The form of functions C+ ( P2x) and Sh( P2T) 
for several q (i. e, the degree of the concentration profile irregularity in the reactor) is 

shown in Fig. 3, 
The derived solution for q = 0 and q = 1 corresponds to the heat and mass ex- 

change between a sphere and a uniform stream of perfect fluid in conditions of total 
absorption of matter at the surface of the sphere (infinitely fast reaction on the surface 
abruptly beginning at instant a = 0). A stationary mode is established with ‘t --t 30, 

and the formulas for concentration dist~bution and mass exchange convert to those de- 

rived in [5] for that case. 

The solution is considerably simplified in the case of systems of small particles for 
which the ratio u0 / uI, is, as a rule,very small. The circulation region is virtually the 

same as the bubble and does not contain particles, hence q = 0. In that case 

Let us consider in conclusion a model example. Numerical value of parameters appear- 

ing in this example correspond as to their order of magnitude to specific systems cited 

in pupations. 
let the initial rate of fluidization be v0 = 15 cmlsec (e. g. glass balls of approximat - 

ely 0.3 mm diameter fluidized by air). For a bubble of radius ab = 1 cm, we have q, z 
30 cm/set, 6 = 0.5, and a, = 1.59 cm. We assume the effective diffusion coefficient 
to be D = 11.9 cm”/sec, so that P = a, (u,, - uO) / D =;: 2. Let k -= 5.9 set--I. From 
this, using formula (1,2), we obtain n = 0.25. We determine the effective constant ofthe 
reaction rate inside the bubble using the rough ap~ximation based on the a~umption 
that k+. = kV, / (V, i- V,,) , where I e and Ii,, are the volumes of the cloud and the bub- 
ble,respectively. Then k+ =3k6 l(1 + 26) = 4.42 set-‘, !I!,’ = 0.94 and 4 = 0.24. 
The dependence of c.,. and Sh on time for this system is shown in Fig. 4. It will be seen 
that in this case the mass exchange between the bubble and the continuous phase at dis- 

tances from the inlet not exceeding by one or two orders of magnitude the bubble dimen- 
sions, is essentially unsteady. 
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Generalized kinetic equations for determining the aggregation of particles in 

suspensions are derived with allowance for dispersion and multiple and exchange 

interactions. A system of equations is derived in a general form for moments of 
the distribution function, and a method for determining equilibrium distribution 
is indicated. Some exact solutions, including self-similar, of the proposed kine- 
tic equations are obtained. 

Physical properties of many suspensions substantially depend on the processes 

of aggregation and dispersion of suspended particles. Such processes are defined 
by special kinetic equations, an example of which is the equation of drop coagu- 

lation (see Cl]). The latter takes into account only one aggregation process, viz. , 
the amalgamation of drops produced by double collisions. Theories which take 
into account also the dispersion of particles (see, e. g. , [ 21) are known. However 
for some systems with high concentration of suspended particles such as, for in- 

stance, blood in which erythrocytes occupy about half of the volume, it is neces- 

sary to take into consideration a more complex interaction between particles. 
Thus in a concentrated suspension the determining effect may be that of col- 

lisions other than double, which in the case of blood become significant for an 

erythrocyte concentration Ii > 5% p]. Besides aggregation and dispersion of 
particles, exchange interactions are possible when two or more particles not iden- 

tical to the original ones are formed as the result of collisions ( * ) . If under cer- 
tain conditions there exists a limit dimension for the aggregate but with possible 
collisions of arbitrary particles, exchange interactions must necessarily OCCUT . 

The above phenomena are taken into consideration in the kinetic equation 

which is derived and analyzed below in Sects. 1 - 4 and 7. Certain exact solu- 
tions of that equation are presented in Sects. 5 and 6. 

1. The kinetic equrtlon. Let us consider a suspension in the form of a mix- 

ture of a “carrier” fluid and suspended particles which may coalesce into aggregates of 
any arbitrary form as the result of effective collisions, i. e. leading to the sticking to- 

* ) This was brought to the attention of the authors by A. G, Kulikovskii. 


